A. 互聯網金融論文相關數據
數據
B. 互聯網金融有哪些相關子行業
眾籌融資:
眾籌其實是一個老概念,早些年,眾籌的一個另外一個詞叫「非法集資」,只不過隨著監管的放寬以及互聯網的興起,眾籌從灰色地帶走向了陽光而已。這個行業目前的成長非常迅速,是繼P2P 借貸後又一重要的互聯網金融分支,我會密切關注這一行業的動向,尤其關註上市公司對於股權眾籌類服務機構的收購,很可能成為未來的一個市場熱點。
電商小貸與網路分期:
從2007年阿里首開小額貸款先河以來,京東、蘇寧、敦煌網、生意寶、慧聰等均已涉足小貸業務,小貸業務已經成為了電商的標配。電商小貸的模式主要是依託電商的平台效應,滿足平台上 B 端、C 端客戶的相關融資需求,這正是傳統銀行業務所滿足不了的。
理財超市:
理財超市是指集合不同理財產品,按照股票、基金、期貨、債券等分類形成一定規模並供投資者參考的平台。看看東方財富(子公司天天基金網)的中報業績,大家就可以看出理財超市的發展速度有多快,當然這也有牛市的原因,但長遠來看,理財超市這種平台業務還有著非常大的發展潛力。
網路銀行:
目前來看只有一家100%純正基因的網路銀行開業-微眾銀行。目前可開設的賬戶屬於弱實名電子賬戶,但已經是互聯網基因的企業在賬戶領域的一個重要進步。別小看第一家網路銀行開業,星星之火,可以燎原。
上面提到的消費端可以看到的互聯網金融形態只不過是此行業投資價值的冰山一角,在水面下,還隱藏著許多子行業,我認為這些行業才是作為投資者的我們需要關注的。金礦旁邊賣水,這個邏輯我喜歡。順著這個邏輯,我們看看有哪些附屬行業、機會、領域。
徵信行業:
任何企業或個人需要借貸,出貸方以及撮合平台首先要考慮借貸方的信用問題。
截止目前:已經有八家民營機構即將獲得徵信牌照:芝麻信用、騰訊徵信、前海徵信、鵬元徵信、中誠信徵信、中智誠徵信、考拉徵信、華道徵信。徵信行業在我國剛剛起步,以前個人徵信這一領域,只有央行徵信徵信系統。隨著互聯網金融的發展,徵信行業也會隨著高速成長。徵信行業的核心在於牌照,這是寬護城河,密切關注哪家上市公司自己擁有牌照或收購了某個有牌照的公司,你會有驚喜。
大數據:
首先大數據應用不僅僅在互聯網金融,而可以說大數據在互聯網金融這個領域上大有用武之地。金融行業本身具有豐富的數據資源,但目前對這些數據的利用率依然很低。未來可以在獲取客戶、徵信、交叉銷售等多方面加強數據應用。另外,互聯網金融利用大數據已經遠遠超出人行徵信的范疇,比如 P2P網貸,它已經覆蓋了個人用戶信息的社交網路痕跡、手機通信記錄等全方位的信息,以降低借貸過程中的不確定性。大數據行業基本由數據提供商、數據服務商和數據應用商組成,圍繞大數據領域,我們可以發現一些行業的隱形冠軍。
雲計算:
雲計算是一種通過運聯網以服務的方式提供動態可伸縮的虛擬化資源的計算模式。目前,電腦、手機等智能終端的普及是雲計算實現的基礎。比如網路雲在2012年推出,僅僅兩個月,其個人用戶量就突破1000萬。到2013年9月上線一年之際,其用戶數量已經超過1億。再比如雙十一對於余額寶結算的挑戰,沒沒用阿里雲與用了阿里雲前後對比,每日清算時間從8小時縮短到了30分鍾。對於金融機構來說,雲計算有助於顯著降低運營成本和創新成本,是互聯網金融產業不可缺少的重要環節。
IT 軟硬體行業:這個行業不用介紹大家都懂,IT 軟硬體是搭建任何互聯網企業的骨骼與血肉,在這個行業里我們可以發現不少因為互聯網金融產業崛起而業績有望暴增的大牛股。
互聯網支付、移動支付:
金融的基礎功能在於支付,互聯網金融也不例外。支付在人類歷史的場合中經過了數次升級,從最初的以物換物,現金支付發展到銀行轉賬再到互聯網第三方支付、移動支付。想想我們現在有多少支付已經在網路以及手機完成,就可以看到這個行業的發展方向。目前支付手段層出不窮,未來像 NFC 、二維碼支付等等新的支付手段必將帶動支付這個子行業的升級發展,涌現出一批軟硬體公司的投資機會。
金融信息服務行業:
任何行業都有配套的服務行業,互聯網金融也不例外,這些行業伴隨互聯網金融行業而生,多數企業有著純正的互聯網基因。比如雪球,我們就可以將其定位為金融信息服務行業的典型代表
C. 如何進行互聯網金融運營數據的分析
做運營必須來要對數據敏感,以下指標自需要關註:
1、用戶注冊數,首先你要知道你的注冊數據
2、注冊成本,就是單個用戶成功注冊的成本
3、投資成本,就是注冊用戶到投資的成本
4、復投率,這個很重要,投資人數再多,如果沒有復投意義不大,因為拉新的成本比留住老用戶要大的多。
5、ROI,其實說了這么多,企業管理者就看重一個指標就是投資回報率,衡量一個推廣渠道的優劣,這個是核心指標
知道了哪個渠道的ROI最高,就可以對你的推廣策略做參考,這樣就能形成良性循環。
D. 互聯網金融運營需要關注的數據有哪些
由於互聯網金融概念較為寬泛,支付、投資理財、信貸、徵信、虛擬貨幣發行(比特幣等)、金融產品搜索等不同領域所關注的核心指標並不相同;即便是相同領域 的公司,由於核心業務模式的差異導致大家所關注指標也不相同。因此從運營角度來看,最靠譜的是結合公司的核心業務模式來歸納運營指標。
互聯網金融公司的金融屬性,從經營風險的角度來看,風險貫穿互聯網金融公司的企業日常運營、IT平台運營等過程,這與普通互聯網公司的運營主要關注產品運 營有極大不同,因此以下所指的運營並不單純指普通互聯網公司的運營部門的運營,而是從整個互聯網公司企業運營角度來說的。
根據互聯網共性可以總結出對應量化指標體系:
1、用戶指標:包括用戶信用評級、活躍度、留存率、轉化率、客單價(平均投資額度)、用戶分布(各等級佔比)、互動指標等等。
2、產品指標:產品組合、投資人數、投資金額、滿標時間、收益率、流標數、風險系數、熱度(受歡迎度)等等。
3、營銷渠道指標:渠道來源、渠道轉化率、渠道成功率、渠道成本等等
4、營銷活動指標:活動成本、活動渠道來源、活動轉化率、傳播數、新增粉絲數/用戶數等等
5、合作方指標:合作帶來的項目數、項目通過率、風險系數、成本等等
6、風控指標:項目審核通過率、風險備用金、項目流動性風險指標、合規相關指標等等
7、支付渠道指標:渠道轉化率、渠道成功率、支付渠道來源、渠道成本等等
8、IT平台指標:用戶體驗指標(包括響應速度等)、可靠性指標、安全性指標等等。這塊與互聯網的指標類似。
9、客服指標:投訴分類、接通率、投訴渠道、響應速度、滿意度等等
10、競爭性指標:競爭對手分析指標、互聯網輿情監控指標等等
運營不要只關注那些數據,數據是外在的,是基礎,而產品和平台核心競爭力才是發展的王道,數據+產品,找到平台最優的發展平衡點,才是運營下的這盤棋的目的。
E. 互聯網金融運營需要關注的數據有哪些呢
我覺得互聯網金融運營需要關注的數據是非常多的。
用戶信息:包括用戶信用評級、活躍度、留存率、轉化率、客單價、用戶分布、互動指標等。
產品信息:產品組合、投資人數、投資金額、滿標時間、收益率、風險系數、受歡迎度等。
營銷渠道信息:渠道來源、渠道轉化率、渠道成功率、渠道成本等。
營銷活動信息:活動成本、活動渠道來源、活動轉化率、傳播數、新增粉絲數/用戶數等。
風控信息:項目審核通過率、風險備用金、項目流動性風險指標、合規相關指標等。
F. 互聯網金融 數據分析需要哪些數據
交易額,投資人數,用戶的屬性,平台的安全信息等等一系列的,你可以自己去相關的數據論壇去看看咯。
G. 互聯網金融主要包括哪些內容
主要有以下幾種模式(一)第三方支付 第三方支付狹義上是指具備一定實力和信譽保障的非銀行機構,藉助通信、計算機和信息安全技術,採用與各大銀行簽約的方式,在用戶與銀行支付結算系統間建立連接的電子支付模式。(二)P2P網貸 P2P網貸英文稱為Peer-to-Peerlending,即點對點信貸,國內又稱「人人貸」。P2P網貸是指通過P2P公司搭建的第三方互聯網平台進行資金借、貸雙方的匹配,是一種「個人對個人」的直接信貸模式。(三)大數據金融 大數據金融是指依託於海量、非結構化的數據,通過互聯網、雲計算等信息化方式對其數據進行專業化的挖掘和分析,並與傳統金融服務相結合,創新性開展相關資金融通工作的統稱。(四)眾籌 眾籌(crowdfunding),是指項目發起人通過利用互聯網和SNS傳播的特性,發動公眾的力量,集中公眾的資金、能力和渠道,為小企業、藝術家或個人進行某項活動或某個項目或創辦企業提供必要的資金援助的一種融資方式。(五)信息化金融機構 信息化金融機構,是指通過廣泛運用以互聯網為代表的信息技術,在互聯網金融時代,對傳統運營流程、服務產品進行改造或重構,實現經營、管理全面信息化的銀行、證券和保險等金融機構。(六)互聯網金融門戶 互聯網金融門戶是指利用互聯網提供金融產品、金融服務信息匯聚、搜索、比較及金融產品銷售並為金融產品銷售提供第三方服務的平台
H. 互聯網金融運營需要關注的數據有哪些
互聯網金融用戶行為特徵:
絕大多數互聯網金融公司,在 web 端購買的轉化率基本都在 1% 以下,APP購買率在 5% 左右,遠遠低於電商或者其他在線交易的購買率。
雖然轉化率低,但是客單價卻很高。一般來說,電商行業客單價在幾十到幾百,而互聯網金融客戶,客單價從幾千到幾萬,某些特殊領域甚至高達幾十萬。而客單價高,就意味著用戶購買決策會更復雜,購買周期也會更長。
用戶購買行為有很強周期性。電商的客戶下次購買時間是不確定的,但是互聯網金融平台上,真正購買的用戶,是有理財需求的用戶,在資金到期贖回產品後,一定還會進行下一次購買,只不過未必發生在你的平台上。
I. 互聯網金融模式的大數據金融
大數據金融是指依託於海量、非結構化的數據,通過互聯網、雲計算等信息化方專式對其數據進行屬專業化的挖掘和分析,並與傳統金融服務相結合,創新性開展相關資金融通工作的統稱。大數據金融擴充了金融業的企業種類,不再是傳統金融獨大,並創新了金融產品和服務,擴大了客戶范圍,降低了企業成本。大數據金融按照平台運營模式,可分為平台金融和供應鏈金融兩大模式。兩種模式代表企業分別為阿里金融和京東金融。
J. 如何進行互聯網金融運營數據的分析,都有哪些方法
作者:張溪夢 Simon
鏈接:https://www.hu.com/question/29185414/answer/110954989
來源:知乎
著作權歸作者所有
我們之前做過一期互聯網金融的公開課,「互聯網金融增長寶典:三大步驟提高轉化,搞定用戶運營」,主講人是 GrowingIO 的業務增長負責人徐主峰,曾任職 Criteo、Microsoft 等公司,有豐富的電商、互聯網金融客戶解決方案經驗。 這是公開課的速記整理。
這是一篇互聯網金融寶典,我推薦給所有轉化率只有 1%、總是為誰可能是你的購買用戶而犯愁的互聯網金融的高管、PM、市場運營和銷售們。本文通過實戰案例,手把手教你建立轉化指標、 梳理分析思路、提供分析步驟並最終建立用戶行為分析模型。
文 / 徐主峰
大部分的互聯網金融公司最為糾結的一點是,流量這么大,獲客成本這么高,為什麼最後的轉化率和成單量卻這么低?怎樣才能提高用戶運營效率?用戶行為數據分析怎樣把處在不同購買決策階段的用戶挑選出來,幫助互聯網金融公司做到精益化運營?
我們的客戶中很大一部分來自互聯網金融,比如人人貸等行業前 10 的互聯網金融公司。在服務客戶的過程中,我們也積累了大量的數據驅動業務的實踐案例,來幫助客戶創造價值。
一 、互聯網金融用戶四大行為特徵
互聯網金融平台用戶有四大行為特徵:
第一流量轉化率低,下圖是某互聯網金融公司網站上,新客戶過去 30 天整體購買轉化漏斗,其轉化率只有 0.38%:
而這並非個例,實際上,絕大多數互聯網金融公司,在 web 端購買的轉化率基本都在 1% 以下,APP購買率在 5% 左右,遠遠低於電商或者其他在線交易的購買率。
第二,雖然轉化率低,但是客單價卻很高。一般來說,電商行業客單價在幾十到幾百,而互聯網金融客戶,客單價從幾千到幾萬,某些特殊領域甚至高達幾十萬。而客單價高,就意味著用戶購買決策會更復雜,購買周期也會更長。
第三,用戶購買行為有很強周期性。電商的客戶下次購買時間是不確定的,但是互聯網金融平台上,真正購買的用戶,是有理財需求的用戶,在資金到期贖回產品後,一定還會進行下一次購買,只不過未必發生在你的平台上。
最後一個特點是「很強的特徵性」,主要包括兩個特徵:
A:用戶的購買偏好比較容易識別,理財產品數量和品類都很少,所以用戶購買的需求或者偏好,很容易從其行為數據上識別出來。
B:用戶購買過程中的三個階段特別容易識別:
用戶在購買決策階段,有大量的交互事件產生,他會看產品,比對不同產品的收益率和風險,比對不同產品的投資期限等等;
但是一旦他完成了產品的購買,就不會有大量的交互行為產生,他可能僅是回來看一看產品的收益率。
當用戶的產品資金贖回之後,又有大量的交互事件產生,實際上他處在下一款產品購買的決策期。
二、互聯網金融用戶運營的三大步驟
針對互聯網金融用戶行為的四個特徵,在用戶運營上有三個比較重要的階段性工作:
1.首先,獲取可能購買的目標用戶,合理配置在渠道上的投放預算,以提高高質量用戶獲取的比例:
渠道工作的核心,主要是做好兩方面的工作:宏觀層面,優化整個渠道的配置;微觀層面,單一渠道角度來說,根據渠道配置的策略,有針對性地實施和調整。
具體渠道的實施,大家都比較熟悉,但是對於整個渠道組合配置的優化,很多人接觸的其實並不多。
以渠道一為例,總體的轉化率是 0.02%;在過去 30 天站內總體的流量是 18.9K,漏斗第一級到第二級的轉化率是 3.36%,這樣一共是五級,我們看到最終渠道一帶來總體的成交用戶一共是 4 人。
類似的,前 10 的渠道數據都很清晰。不同渠道帶來的流量,不同渠道總體的轉化率,以及不同渠道在整個轉化路徑上每步的轉化率都可以看到。
這裡面有幾個渠道很有特點:
渠道一的特點,渠道一帶來的流量是所有 10 個渠道里最大的,但是它的總體轉化率卻是低的;
渠道二和渠道七,渠道二的量很大,但是轉化率是零。渠道七量比較一般,轉化率也是零;
渠道九和渠道十,這兩個渠道是所有渠道里轉化率最高的。但是這兩個渠道特點,是帶來流量不是特別大……
結合典型渠道特點,可以做一個象限圖:
第一象限(右上角)渠道質量又高,帶來流量又大的,這裡面渠道三四五是符合這個特徵的,渠道策略應該是繼續保持和提高渠道的投入。
第二象限(左上角)渠道的質量比較高,但帶來的流量比較小,這裡麵包含的主要渠道就是八九十。對應的主要策略是,加大渠道的投放,並且在加大投放的過程中,要持續關注渠道質量的變化。
我們先看第四象限(右下角),渠道質量比較差,但是帶來流量比較大,這裡面主要有渠道一和渠道二。相對應的渠道策略,應該在渠道做更加精準的投放,來提高整個渠道的質量。
第三象限(左下角)這個象限里渠道質量又差,帶來流量又小,比如渠道六跟渠道七。我們是否要直接砍掉?這里建議是,策略上要比較謹慎一些。所以在具體渠道的策略上,業績保持監測,然後小步調整。
根據上面數據分析得出的結果,做過渠道優化後,就會為我們帶來更多高質量的用戶。
2.接下來就要把高價值的用戶——真正有購買需求,願意付費、購買的用戶找出來。
將資源與精力投入到真正可能購買的用戶上的前提是,我們要能夠識別出,哪些是真正有價值的用戶?哪些是價值偏低的用戶?
其實對於互聯網金融平台來說,甚至所有包含在線交易的平台,用戶的購買意願,是可以從用戶的行為數據上識別出來的。由於互聯網金融平台的特殊性,相比於電商平台來說,商品品類更少,平台功能也更為簡單,所以用戶的行為數據,也更能反應出互聯網金融平台上用戶的購買意願。
把用戶在平台上的所有行為總結一下,核心的行為其實並不多,具體包括:
用戶查看產品列表頁,說明有一些購買意願,點擊某個產品,說明用戶希望有進一步的了解。用戶最終確認了支付,完成了購買,購買流程就走完了,他的理財需求已經得到了滿足。每一種行為都表示出用戶不同程度的購買意願,所以獲得用戶在產品里的行為數據就十分重要。
既然用戶行為數據這么重要,那麼怎樣獲取呢?GrowingIO 以無埋點的方式,全量採集用戶所有的行為數據,根據我們對業務的需求,配比成不同的權重系數,並按照每個用戶購買意願的強弱,進一步分群。
這是我們一個客戶製作的用戶購買意願指標的範例,剛才的前 5 個行為,都是用戶在購買前典型的行為:
每種典型事件的權重系數不一樣,用戶購買意願是越來越強的:用戶點了投資按紐,甚至點了提交的按鈕,顯然要比他單單看產品列表頁,或者單單看產品頁、詳情頁的意願強。越能反應用戶購買意願的事件,你給它分類的權重應該是最大的,這是大的原則,0.05 還是 0.06 影響並不大,所以不必糾結。
這樣通過這種方式,我們就可以按照每個用戶的所有行為,給用戶做購買意願打分的指標,最終形成用戶購買意願的指標。
這是我們從高到低截取部分用戶購買意願打分的情況,第一列是每個用戶的 ID,第二列是按照購買意願給每個用戶打分的情況。得分高的,就是購買意願最強烈的用戶。
拿到所有用戶購買意願之後,我們就可以按照用戶購買意願的強烈與否,把所有的用戶分成不同的群體,來做針對性的運營。
這是在把用戶在過去 14 天內,由其產生的所有行為數據,按照購買意願打分的權重,把打分大於 5 的用戶找出來,在總體用戶里,這部分用戶購買意願排名前 20% ,我們給它起個名字,叫購買意願強烈的用戶。
類似我們還做了購買意願中等的用戶分群,這是購買意願排名在 20-60% 之間的用戶;購買意願排名在最後 40% 的用戶,是購買意願最弱的用戶分群。
分群之後,點擊任意一個分群,都會以用戶 ID 的形式列出來。因為你要有用戶的 ID ,才能對這些用戶施加運營策略。每個用戶最近 30 天的訪問次數,最近的訪問地點,最後一次訪問時間都可以看到。
接下來針對這些購買意願強烈的用戶,怎樣推動用戶的轉化呢?
3.採取針對性的運營策略,提高高價值用戶的轉化率。
首先我們來看一下購買偏好,互聯網金融平台商品品類是比較少的,用戶購買的目的性也比較清晰,一般商品的品類有這么幾種:
第一種:債券型理財產品
第二種:股票型理財產品
第三種:貨幣型理財產品
第四種:指數型理財產品
第五種:混合型理財產品…
我們把用戶在不同品類商品上的訪問時長佔比算出來,就能比較好地了解用戶的購買偏好。比如下圖,我們用用戶訪問債券型產品詳情頁的訪問時長,除以用戶在站內總體的訪問時長,就能夠得到用戶在債券產品上訪問時長佔比的指標。
我們還是使用用戶分群的工具,把在債券型產品上的訪問時長佔比大於40%的用戶分出來,這是有非常強烈表徵的客戶,他購買的偏好就是債券型的產品。
同時我們再設定另外一個指標,比如用戶購買意願指標,之前我們做過大於5,也就是購買意願排名在前 20% 的。
通過這兩個條件,我們就可以把購買偏好是債券型產品,同時有強烈購買意願的用戶找出來,這兩個指標的關系是並(and)的關系。同樣我們可以按照用戶的購買偏好,把關注其他品類的用戶,都做成不同的用戶分群,然後形成不同購買偏好的用戶群體。
針對這些用戶,其實在運營策略上,我們可以從三個層面來展開來進行做:
從購買階段的角度,首先我們把所有用戶可以分成新客和老客。對於這兩個群體來說,運營策略和運營重點是非常不一樣的。
新客群體,是從來沒有在平台上發生過購買的用戶,我們要根據用戶的購買意願,做進一步的運營。
老客群體,也就是在平台上已經發生過產品購買的用戶,除了關注用戶的購買意願之外,用戶的資金狀態(資金是否贖回)也是非常重要的參數。
用戶是否購買過產品?購買產品的用戶是否已經贖回資金?這兩個內容,其實是一個用戶當前的屬性。在我們分群的工作里,這有個維度的菜單,通過這個維度菜單,我們就可以把具有某種屬性的用戶找出來:
這里我做了一個分群,我們可以看一下。在維度的菜單里,我們把是否購買過產品的維度值設置成了 1 。把資金是否已經贖回這個維度的值,也設置成了 1 。實際上是把那些資金已經贖回的老用戶找出來;同樣在指標這個菜單里,我們同時也把有強烈購買意願的用戶找出來,時間是過去 14 天,指標大於 5 。
這樣我們就製作了一個用戶分群,而這個用戶分群里所有用戶,要滿足下面的三個特徵:
特徵一:購買過產品的老客。
特徵二:他們的資金,目前已經贖回了。
特徵三:過去 14 天內的行為數據,表明這個用戶有著強烈的購買意願。
同理我們把所有用戶,整理為下面幾個不同類別,對應不同的運營策略:
比如新客里,當前有購買意願的,其實他屬於購買決策期的新用戶。應該根據用戶的購買偏好,推薦這種比較優質的理財產品。並給予一定的購買激勵,來促進這些新客在平台上的第一次購買,這個對於新客來說是非常重要的,以此類推。
相比於電商或者其他行業,互聯網金融平台結合行業和用戶的特點,從用戶行為數據分析的角度,驅動產品業務以及提高用戶的轉化率,有更加重要的意義。