導航:首頁 > 金融公司 > 互聯網金融大數據公司

互聯網金融大數據公司

發布時間:2020-12-14 18:52:59

❶ 優秀的互聯網金融公司,是怎麼玩大數據風控的

這方面淘寶是最抄的最棒的,其次是騰訊做的野蠻好的,之後是網路以及360在緊跟其後!
說白了是你生活中只要跟消費相關的信息都收集分析,之後會有一個風險比對。、
這個就算我們知道了也做不到,但是可以藉助螞蟻芝麻信用來做驗證風控即可!

互聯網金融是互聯網金融還是大數據金融

像阿里的「余額寶」才是大數據金融,像現在很火的P2P只能算互聯網金融,因為數據群無法達到大數據。

❸ 互聯網金融大數據風控哪家好

北京來永洪商智科技有限公源司,國內領先的數據可視化分析解決方案提供商,為百億級數據量的大型企業和各個垂直行業的中小企業提供靈活的數據分析解決方案。專注於讓企業用戶實現敏捷的數據化運營,實時洞察業務狀況,支持戰略決策。擁有分布式計算、分布式存儲、分布式通信、雲計算、數據處理、數據展現等多項技術專利。

❹ 優秀的互聯網金融公司,都是怎麼玩大數據風控的

現在一提起互聯網金融行業、Fintech領域,人工智慧、大數據風控的熱度就直線飆升。許多交易規模比較大的互聯網金融公司都在努力發展大數據風控技術,以構建提供普惠金融服務的能力。
那麼,這些優秀的互聯網金融公司,都是怎麼玩大數據風控的呢?
陸金所:KYC 2.0系統
精準判斷投資者的風險承受能力
陸金所自成立起就引進國際領先的第四代風險管理系統,借鑒平安集團經驗,形成了成熟的風險管理數據模型。其近日又推出了KYC 2.0系統,力求通過大數據技術、機器學習以及金融工程等方法,建立完整的互聯網財富管理平台投資者適當性管理體系,在資金端對投資者進行「精準畫像」,並提供智能推薦服務。
據了解,KYC2.0系統在原有的保守、穩健、平衡、成長、進取五大類型基礎上對投資者風險承受力評估結果進行量化,每位用戶都會獲得專屬的風險承受能力分值,又稱「堅果財智分」,對投資者風險承受能力的判斷更精準。
點評:量化數據信息,進行大數據建模。
風控最好的數據還是金融數據,例如年齡、收入、職業、學歷、資產、負債等信用數據,這些數據同信用相關度高,可以反映用戶的還款能力和還款意願,這些數據因子在風控模型中必不可少,權重也很高,是風險評估最好的數據。
所以,陸金所以平安集團經驗為基礎運用到的大數據風控,使用的是圍繞用戶周圍的信用數據,這些數據的特點是和用戶的信用情況高度相關,可以作為一個重要因子進行錄入,對其個人進行打分,再對其進行個體分析,最終得到一個綜合評分,這就對用戶進行了一個精準的風險承受能力評判。
民貸天下:拓寬數據維度
實現純線上智能化服務
民貸天下基於穩健、安全、規范的風控理念,其風控部門確定了「風控從嚴」原則,設定了借款審查、貸中管理、貸後跟蹤等風控流程。目前,民貸天下正全力推進全智能化建設,構造一個完整的、從資產端到平台端的全鏈路大數據風控系統,通過對人工智慧、大數據分析、知識圖譜、區塊鏈等技術的運用,為平台運營及業務發展提供強大動力。
在傳統數據之外,民貸天下還不斷拓展數據維度,如在用戶授權下,對用戶社交數據、訪問時間、相關認證、通訊記錄等數據整合分析,並且與螞蟻金服、芝麻信用、前海徵信、同盾等第三方機構緊密合作,進一步豐富對用戶的數據畫像,使民貸天下的大數據風控系統更加精準,從而實現從客戶申請、受理、審核、授信、放款到貸中貸後管理等純線上智能化服務。
點評:拓寬數據維度,是對傳統風控的補充。
傳統風控模型已經不能適應復雜的現代風險管理環境,特別在數據信息錄入維度上,影響用戶信用評分的信息較多,很多都沒有引入到風險評估流程。而大數據風控可以提供全面的數據(數據的廣度),強相關數據(數據的深度),實效性數據(數據的鮮活度)。
民貸天下利用這樣的大數據風控,通過與第三方合作等方式,將內部數據以及原有數據打通和整合之後,就會影響風險評估結果,提升信用風險管理水平,客觀地反映用戶風險水平。這些多維度、全面的信息正是大數據風控的優勢所在,同時也是對傳統風控一個很好的補充,進一步實現智能化服務。
真融寶:以數據介質為主
構建數據和模型演算法的核心技術
真融寶以數據介質為主,利用分布式計算處理數據,以公眾互聯網的全網為平台,以全網收集的數據來補充內部網集成的數據。並且在用戶數據方面,對每個新進用戶建立一份電子檔案,對每名用戶投資需求進行了解登記,並對每一筆資金進行多重備份,形成動態的用戶資金數據。
除此之外,真融寶還利用大數據進行決策,將金融活動轉化為智能數據處理活動,降低人為因素的干擾,提高風險評估、分析和預警能力,大數據提供的信息使得真融寶的決策更加科學智能化,對於風控的精準度控制起到非常大的幫助作用。
點評:數據和模型演算法,可建立實時風險管理視圖。
大數據的數據採集和計算能力,可以幫助企業建立實時的風險管理視圖。藉助於全面多緯度的數據、自我學習能力的風控模型、實時計算結果、壞種子數據,真融寶可以通過大量的數據累積,能夠產生出非常有效的識別客戶的能力,提升量化風險評估能力。
數據、技術、模型、分析將成為信用風險評估的四個關鍵元素,其背後的力量就是大數據的技術和分析能力。真融寶利用大數據的風控能力,實時輸出風險因子信息,提高了風險管理的及時性。
一直以來,風控都是金融機構的生命線。從陸金所、民貸天下、真融寶這三家互聯網金融公司為例,預計在未來,可能每家做借貸類的互聯網金融公司都會發展出屬於自己的一套大數據風控體系,並且隨著互聯創業公司的業務數據越來越大,數據基礎會逐漸扎實。

❺ 大數據和人工智慧在互聯網金融領域有哪些應用

大數據從四個方面改變了金融機構傳統的數據運作方式,從而實現了巨大的商業價值。這四個方面(「四個C」)包括:數據質量的兼容性(Compatibility)、數據運用的關聯性(Connectedness)、數據分析的成本(Cost)以及數據價值的轉化(Capitalization)。

大數據在金融業的應用場景正在逐步拓展。在海外,大數據已經在金融行業的風險控制、運營管理、銷售支持和商業模式創新等領域得到了全面嘗試。在國內,金融機構對大數據的應用還基本處於起步階段。數據整合和部門協調等關鍵環節的挑戰仍是阻礙金融機構將數據轉化為價值的主要瓶頸。

數據技術與數據經濟的發展是持續實現大數據價值的支撐。深度應用正在將傳統IT從「後端」不斷推向「前台」,而存量架構與創新模塊的有效整合是傳統金融機構在技術層面所面臨的主要挑戰。此外,數據生態的發展演進有其顯著的社會特徵。作為其中的一員,金融機構在促進數據經濟的發展上任重道遠。

無論是在金融企業還是非金融企業中,數據應用及業務創新的生命周期都包含五個階段:業務定義需求;IT部門獲取並整合數據;數據科學家構建並完善演算法與模型;IT發布新洞察;業務應用並衡量洞察的實際成效。

在今天的大數據環境下,生命周期仍維持原樣,而唯一變化的是「數據科學家」在生命周期中所扮演的角色。大數據將允許其運用各種新的演算法與技術手段,幫助IT不斷挖掘新的關聯洞察,更好地滿足業務需求。

❻ 常用的互聯網金融大數據風控方式有哪些

1:驗證借款人信息
驗證借款人身份的五因素認證是姓名、手機號、身份證號、銀行卡號、家庭地址。企業可以通過藉助銀聯數據來驗證銀行卡號和姓名。
其他的驗證客戶的方式包括讓客戶出示其他銀行的信用卡及刷卡記錄,或者驗證客戶的學歷證書和身份認證。

2:大數據分析提交的信息
大部分的貸款申請都從線下移到了線上,特別是在互聯網金融領域,消費貸一般都是以線上申請為主的。
線上申請時,申請人會按照貸款公司的要求填寫多維度信息例如戶籍地址,居住地址,工作單位,單位電話,單位名稱等。如果是欺詐用戶,其填寫的信息往往會出現一些規律,企業可根據異常填寫記錄來識別欺詐。例如填寫不同城市居住小區名字相同、填寫的不同城市,不同單位的電話相同、不同單位的地址街道相同、單位名稱相同、甚至居住的樓層和號碼都相同。
3:分析客戶的消費信息
從客戶的電商消費記錄、旅遊消費記錄、以及加油消費記錄都可以作為評估其信用的依據。有的互聯金融公司專門從事個人電商消費數據分析,只要客戶授權其登陸電商網站,其可以藉助於工具將客戶歷史消費數據全部抓取並進行匯總和評分。
4:參考客戶的社會屬性和行為進行評估
參考過去互聯網金融風控的經驗發現,擁有伴侶和子女的借款人,其貸款違約率較低;年齡大的人比年齡低的人貸款違約率要高。經常不交公共事業費和物業費的人,其貸款違約率較高。經常換工作,收入不穩定的人貸款違約率較高。經常參加社會公益活動的人,成為各種組織會員的人,其貸款違約率低。經常更換手機號碼的人貸款違約率比一直使用一個電話號碼的人高很多。

5:調查客戶是否進入黑名單
市場上有近百家的公司從事個人徵信相關工作,其主要的商業模式是反欺詐識別,灰名單識別,以及客戶徵信評分。反欺詐識別中,重要的一個參考就是黑名單,市場上領先的大數據風控公司擁有將近1000萬左右的黑名單,大部分黑名單是過去十多年積累下來的老賴名單,真正有價值的黑名單在兩百萬左右。
涉毒涉賭以及涉嫌治安處罰的人,其信用情況不是太好,特別是涉賭和涉毒人員,這些人是高風險人群,一旦獲得貸款,其貸款用途不可控,貸款有可能不會得到償還。

❼ 目前為止哪些學校開設有互聯網金融,大數據

目前國內高校開設互聯網金融專業的並不算多,因為該專業屬於新興的「互聯網+」前沿專回業,是伴答隨著金融行業互聯網化應運而生的。據我所知,對外經濟貿易大學、武漢大學國際軟體學院率先聯合慧科集團開設了這個專業,隨後河北軟體職業技術學院、山東女子學院等重視學生就業質量的高校也相繼開設了該專業。由於互聯網金融行業的快速發展,市場上對專業的互聯網金融人才的需求急劇增加。因此,可以預見未來會有越來越多的學校開設這個專業。

❽ 互聯網金融模式的大數據金融

大數據金融是指依託於海量、非結構化的數據,通過互聯網、雲計算等信息化方專式對其數據進行屬專業化的挖掘和分析,並與傳統金融服務相結合,創新性開展相關資金融通工作的統稱。大數據金融擴充了金融業的企業種類,不再是傳統金融獨大,並創新了金融產品和服務,擴大了客戶范圍,降低了企業成本。大數據金融按照平台運營模式,可分為平台金融和供應鏈金融兩大模式。兩種模式代表企業分別為阿里金融和京東金融。

❾ 大數據對互聯網金融的發展有什麼作用

自互聯網金融被廣而告之以後,大家就一直在被灌輸大數據在互聯網金融發展中的作用巨大,甚至最近更有專家說大數據是互聯網金融發展的加速器。但是似乎並沒有一個系統的說法,大數據具體有什麼用,我們只知道互聯網金融確實是其中的獲益者之一,下面且聽聽通金魔方分析師的見解。

我們首先從互聯網金融的含義生對大數據有個簡單的了解。正如互聯網金融之父謝平所言,所謂的互聯網金融,並非是簡單的將互聯網和金融進行疊加。

正確的理解應該是基於互聯網應用的特殊技術,推動了全新的商業模式,產品服務,對金融領域產生的顛覆性變革。在這其中,大數據則充當了很重要的推手。接下來我們來看一下大數據在互聯網金融發展中的作用體現。

精準的用戶分析

大數據的首要作用就是在於它能夠對用戶進行准確的分析,然後幫助互聯網金融找到合適的目標用戶,進而實現精準營銷。

在目前的互聯網金融領域,很多新興的企業,大多以做貸款或者金融衍生產品為主。其主打的賣點主要在於較高的投資收益或者較低的手續費優惠。但是在競爭日益加劇的市場環境下,由於不能保證資金流穩定,或者客戶粘性而倒閉的企業隨處可見。

據相關數據顯示,截止2013年底,中國境內共有450家P2P公司,其中有的甚至在創立幾天內即宣布倒閉。在這樣的基礎之上,實現精準營銷才是這些企業唯一的出路,這也正是大數據的作用所在。

雖然互聯網金融的發展仍然處於起步階段,但是卻已經有了相當豐富的成熟案例。比如通過定向技術查看用戶近期瀏覽過的理財網站,通過關鍵詞,瀏覽數據建立用戶模型,從而實現優化產品的實時推薦頻度,以便最大限度的鎖定有效用戶等。

幫助金融企業風險防控

除了以上的首要作用之外,大數據還能夠幫助金融企業加強風險的可控性。在精細化管理方面助推了互聯網金融,尤其是信貸服務的發展。

比如通過對大量網路交易及行為數據的分析,可以為用戶的信用評估提供可靠的依據。這些信用評估可以幫助金融企業在用戶的還款意願和能力方面做出較為准確的結論,以便決定是否繼續為該用戶提供快速授信或者現金分期等服務。從而最大限度的降低金融企業的業務風險。

當然,我們對於個人用戶或者企業用戶信用好壞的評定取決於諸多因素,但是我們也可以從這諸多因素中找到相應的數據。比如我們要尋找這個用戶的整體收入,固定資產,性格特點甚至是行為習慣等,那麼我們就可以從網上銀行,電商,社交網路,甚至招聘和婚介網站等地方獲取。

大數據的作用在這裡面得以體現的最關鍵的一點就是,這些所謂的數據往往都是以動態變數的形式存在的,而我們要想以此為依據獲得准確的信用評級,則更要倚重於大數據的持續分析功能。

通過上面的分析,我們也不得不承認大數據在互聯網金融發展中作用巨大,只不過在現在這個互聯網金融的起步階段,大數據作用的發掘仍不算完整,我們只能一步一步的在不斷的發展中發現它的好。

❿ 大數據和人工智慧在互聯網金融領域有哪些應用


數據從四個方面改變了金融機構傳統的數據運作方式,從而實現了巨大的商業價值。這四個方面(「四個C」)包括:數據質量的兼容性
(Compatibility)、數據運用的關聯性(Connectedness)、數據分析的成本(Cost)以及數據價值的轉化
(Capitalization)。


大數據在金融業的應用場景正在逐步拓展。在海外,大數據已經在金融行業的風險控制、運營管理、銷售支持和商業模式創新等領域得到了全面嘗試。在國內,金
融機構對大數據的應用還基本處於起步階段。數據整合和部門協調等關鍵環節的挑戰仍是阻礙金融機構將數據轉化為價值的主要瓶頸。


數據技術與數據經濟的發展是持續實現大數據價值的支撐。深度應用正在將傳統IT從「後端」不斷推向「前台」,而存量架構與創新模塊的有效整合是傳統金融
機構在技術層面所面臨的主要挑戰。此外,數據生態的發展演進有其顯著的社會特徵。作為其中的一員,金融機構在促進數據經濟的發展上任重道遠。

為了駕馭大數據,國內金融機構要在技術的基礎上著重引入以價值為導向的管理視角,最終形成自上而下的內嵌式變革。其中的三個關鍵點(「TMT」)包括:團隊(Team)、機制(Mechanism)和思維(Thinking)。

1.價值導向與內嵌式變革—BCG對大數據的理解

「讓數據發聲!」—隨著大數據時代的來臨,這個聲音正在變得日益響亮。為了在喧囂背後探尋本質,我們的討論將從大數據的定義開始。

1.1成就大數據的「第四個V」

大數據是什麼?在這個問題上,國內目前常用的是「3V」定義,即數量(Volume)、速度(Velocity)和種類(Variety)。


雖然有著這樣的定義,但人們從未停止討論什麼才是成就大數據的「關鍵節點」。人們熱議的焦點之一是「到底多大才算是大數據?」其實這個問題在「量」的層
面上並沒有絕對的標准,因為「量」的大小是相對於特定時期的技術處理和分析能力而言的。在上個世紀90年代,10GB的數據需要當時計算能力一流的計算機
處理幾個小時,而這個量現在只是一台普通智能手機存儲量的一半而已。在這個層面上頗具影響力的說法是,當「全量數據」取代了「樣本數據」時,人們就擁有了
大數據。


另外一個成為討論焦點的問題是,今天的海量數據都來源於何處。在商業環境中,企業過去最關注的是ERP(Enterprise Resource
Planning)和CRM(Customer Relationship
Management)系統中的數據。這些數據的共性在於,它們都是由一個機構有意識、有目的地收集到的數據,而且基本上都是結構化數據。隨著互聯網的深
入普及,特別是移動互聯網的爆發式增長,人機互動所產生的數據已經成為了另一個重要的數據來源,比如人們在互聯網世界中留下的各種「數據足跡」。但所有這
些都還不是構成「大量數據」的主體。機器之間交互處理時沉澱下來的數據才是使數據量級實現跨越式增長的主要原因。「物聯網」是當前人們將現實世界數據化的
最時髦的代名詞。海量的數據就是以這樣的方式源源不斷地產生和積累。

「3V」的定義專注於對數據本身的特徵進行描述。然而,是否是量級龐大、實時傳輸、格式多樣的數據就是大數據?

BCG認為,成就大數據的關鍵點在於「第四個V」,即價值(Value)。當量級龐大、實時傳輸、格式多樣的全量數據通過某種手段得到利用並創造出商業價值,而且能夠進一步推動商業模式的變革時,大數據才真正誕生。

1.2變革中的數據運作與數據推動的內嵌式變革

多元化格式的數據已呈海量爆發,人類分析、利用數據的能力也日益精進,我們已經能夠從大數據中創造出不同於傳統數據挖掘的價值。那麼,大數據帶來的「大價值」究竟是如何產生的?


無論是在金融企業還是非金融企業中,數據應用及業務創新的生命周期都包含五個階段:業務定義需求;IT部門獲取並整合數據;數據科學家構建並完善演算法與
模型;IT發布新洞察;業務應用並衡量洞察的實際成效。在今天的大數據環境下,生命周期仍維持原樣,而唯一變化的是「數據科學家」在生命周期中所扮演的角
色。大數據將允許其運用各種新的演算法與技術手段,幫助IT不斷挖掘新的關聯洞察,更好地滿足業務需求。


因此,BCG認為,大數據改變的並不是傳統數據的生命周期,而是具體的運作模式。在傳統的數據基礎和技術環境下,這樣的周期可能要經歷一年乃至更長的時
間。但是有了現在的數據量和技術,機構可能只需幾周甚至更短的時間就能走完這個生命周期。新的數據運作模式使快速、低成本的試錯成為可能。這樣,商業機構
就有條件關注過去由於種種原因而被忽略的大量「小機會」,並將這些「小機會」累積形成「大價值」。

具體而言,與傳統的數據應用相比,大數據在四個方面(「4C」)改變了傳統數據的運作模式,為機構帶來了新的價值。

1.2.1數據質量的兼容性(Compatibility):大數據通過「量」提升了數據分析對「質」的寬容度


在「小數據」時代,數據的獲取門檻相對較高,這就導致「樣本思維」占據統治地位。人們大多是通過抽樣和截取的方式來捕獲數據。同時,人們分析數據的手段
和能力也相對有限。為了保證分析結果的准確性,人們通常會有意識地收集可量化的、清潔的、准確的數據,對數據的「質」提出了很高的要求。而在大數據時代,
「全量思維」得到了用武之地,人們有條件去獲取多維度、全過程的數據。但在海量數據出現後,數據的清洗與驗證幾乎成為了不可能的事。正是這樣的困境催生了
數據應用的新視角與新方法。類似於分布式技術的新演算法使數據的「量」可以彌補「質」的不足,從而大大提升了數據分析對於數據質量的兼容能力。

1.2.2數據運用的關聯性(Connectedness):大數據使技術與演算法從「靜態」走向「持續」


在大數據時代,對「全量」的追求使「實時」變得異常重要,而這一點也不僅僅只體現在數據採集階段。在雲計算、流處理和內存分析等技術的支撐下,一系列新
的演算法使實時分析成為可能。人們還可以通過使用持續的增量數據來優化分析結果。在這些因素的共同作用下,人們一貫以來對「因果關系」的追求開始松動,而
「相關關系」正在逐步獲得一席之地。

1.2.3數據分析的成本(Cost):大數據降低了數據分析的成本門檻


大數據改變了數據處理資源稀缺的局面。過去,數據挖掘往往意味著不菲的投入。因此,企業希望能夠從數據中發掘出「大機會」,或是將有限的數據處理資源投
入到有可能產生大機會的「大客戶、大項目」中去,以此獲得健康的投入產出比。而在大數據時代,數據處理的成本不斷下降,數據中大量存在的「小機會」得見天
日。每個機會本身帶來的商業價值可能並不可觀,但是累積起來就會實現質的飛躍。所以,大數據往往並非意味著「大機會」,而是「大量機會」。

1.2.4數據價值的轉化(Capitalization):大數據實現了從數據到價值的高效轉化


在《互聯網金融生態系統2020:新動力、新格局、新戰略》報告中,我們探討了傳統金融機構在大變革時代所需採取的新戰略思考框架,即適應型戰略。採取
適應型戰略有助於企業構築以下五大優勢:試錯優勢、觸角優勢、組織優勢、系統優勢和社會優勢,而大數據將為金融機構建立這些優勢提供新的工具和動力。從數
據到價值的轉化與機構的整體轉型相輔相成,「內嵌式變革」由此而生。


例如,金融機構傳統做法中按部就班的長周期模式(從規劃、立項、收集數據到分析、試點、落地、總結)不再適用。快速試錯、寬進嚴出成為了實現大數據價值
的關鍵:以低成本的方式大量嘗試大數據中蘊藏的海量機會,一旦發現某些有價值的規律,馬上進行商業化推廣,否則果斷退出。此外,大數據為金融機構打造「觸
角優勢」提供了新的工具,使其能夠更加靈敏地感知商業環境,更加順暢地搭建反饋閉環。此外,數據的聚合與共享為金融機構搭建生態系統提供了新的場景與動
力。

2.應用場景與基礎設施—縱覽海內外金融機構的大數據發展實踐


金融行業在發展大數據能力方面具有天然優勢:受行業特性影響,金融機構在開展業務的過程中積累了海量的高價值數據,其中包括客戶身份、資產負債情況、資
金收付交易等數據。以銀行業為例,其數據強度高踞各行業之首—銀行業每創收100萬美元,平均就會產生820GB的數據。

2.1大數據的金融應用場景正在逐步拓展

大數據發出的聲音已經在金融行業全面響起。作為行業中的「巨無霸」,銀行業與保險業對大數據的應用尤其可圈可點。

2.1.1海外實踐:全面嘗試

2.1.1.1銀行是金融行業中發展大數據能力的「領軍者」


在發展大數據能力方面,銀行業堪稱是「領軍者」。縱觀銀行業的六個主要業務板塊(零售銀行、公司銀行、資本市場、交易銀行、資產管理、財富管理),每個
業務板塊都可以藉助大數據來更深入地了解客戶,並為其制定更具針對性的價值主張,同時提升風險管理能力。其中,大數據在零售銀行和交易銀行業務板塊中的應
用潛力尤為可觀。


BCG通過研究發現,海外銀行在大數據能力的發展方面基本處於三個階段:大約三分之一的銀行還處在思考大數據、理解大數據、制定大數據戰略及實施路徑的
起點階段。還有三分之一的銀行向前發展到了嘗試階段,也就是按照規劃出的路徑和方案,通過試點項目進行測驗,甄選出許多有價值的小機會,並且不停地進行試
錯和調整。而另外三分之一左右的銀行則已經跨越了嘗試階段。基於多年的試錯經驗,他們已經識別出幾個較大的機會,並且已經成功地將這些機會轉化為可持續的
商業價值。而且這些銀行已經將匹配大數據的工作方式嵌入到組織當中。他們正在成熟運用先進的分析手段,並且不斷獲得新的商業洞察。


銀行業應用舉例1:將大數據技術應用到信貸風險控制領域。在美國,一家互聯網信用評估機構已成為多家銀行在個人信貸風險評估方面的好幫手。該機構通過分
析客戶在各個社交平台(如Facebook和Twitter)留下的數據,對銀行的信貸申請客戶進行風險評估,並將結果賣給銀行。銀行將這家機構的評估結
果與內部評估相結合,從而形成更完善更准確的違約評估。這樣的做法既幫助銀行降低了風險成本,同時也為銀行帶來了風險定價方面的競爭優勢。


相較於零售銀行業務,公司銀行業務對大數據的應用似乎缺乏亮點。但實際上,大數據在公司銀行業務的風險領域正在發揮著前所未有的作用。在傳統方法中,銀
行對企業客戶的違約風險評估多是基於過往的營業數據和信用信息。這種方式的最大弊端就是缺少前瞻性,因為影響企業違約的重要因素並不僅僅只是企業自身的經
營狀況,還包括行業的整體發展狀況,正所謂「覆巢之下,焉有完卵」。但要進行這樣的分析往往需要大量的資源投入,因此在數據處理資源稀缺的環境下無法得到
廣泛應用,而大數據手段則大幅減少了此類分析對資源的需求。西班牙一家大型銀行正是利用大數據來為企業客戶提供全面深入的信用風險分析。該行首先識別出影
響行業發展的主要因素,然後對這些因素一一進行模擬,以測試各種事件對其客戶業務發展的潛在影響,並綜合評判每個企業客戶的違約風險。這樣的做法不僅成本
低,而且對風險評估的速度快,同時顯著提升了評估的准確性。


銀行業應用舉例2:用大數據為客戶制定差異化產品和營銷方案。在零售銀行業務中,通過數據分析來判斷客戶行為並匹配營銷手段並不是一件新鮮事。但大數據
為精準營銷提供了廣闊的創新空間。例如,海外銀行開始圍繞客戶的「人生大事」進行交叉銷售。這些銀行對客戶的交易數據進行分析,由此推算出客戶經歷「人生
大事」的大致節點。人生中的這些重要時刻往往能夠激發客戶對高價值金融產品的購買意願。一家澳大利亞銀行通過大數據分析發現,家中即將有嬰兒誕生的客戶對
壽險產品的潛在需求最大。通過對客戶的銀行卡交易數據進行分析,銀行很容易識別出即將添丁的家庭:在這樣的家庭中,准媽媽會開始購買某些葯品,而嬰兒相關
產品的消費會不斷出現。該行面向這一人群推出定製化的營銷活動,獲得了客戶的積極響應,從而大幅提高了交叉銷售的成功率。


客戶細分早已在銀行業得到廣泛應用,但細分維度往往大同小異,包括收入水平、年齡、職業等等。自從開始嘗試大數據手段之後,銀行的客戶細分維度出現了突
破。例如,西班牙的一家銀行從Facebook和Twitter等社交平台上直接抓取數據來分析客戶的業余愛好。該行把客戶細分為常旅客、足球愛好者、高
爾夫愛好者等類別。通過分析,該行發現高爾夫球愛好者對銀行的利潤度貢獻最高,而足球愛好者對銀行的忠誠度最高。此外,通過分析,該行還發現了另外一個小
客群:「敗家族」,即財富水平不高、但消費行為奢侈的人群。這個客群由於人數不多,而且當前的財富水平尚未超越貴賓客戶的門檻,因此往往被銀行所忽略。但
分析顯示這一人群能夠為銀行帶來可觀的利潤,而且頗具成長潛力,因此該行決定將這些客戶升級為貴賓客戶,深入挖掘其潛在價值。


在對公業務中,銀行同樣可以藉助大數據形成更有價值的客戶細分。例如,在BCG與一家加拿大銀行的合作項目中,項目組利用大數據分析技術將所有公司客戶
按照行業和企業規模進行細分,一共建立了上百個細分客戶群。不難想像,如果沒有大數據的支持,這樣深入的細分是很難實現的。然後,項目組在每個細分群中找
出標桿企業,分析其銀行產品組合,並將該細分群中其他客戶的銀行產品組合與標桿企業進行比對,從而識別出差距和潛在的營銷機會。項目組將這些分析結果與該
行的對公客戶經理進行分享,幫助他們利用這些發現來制定更具針對性的銷售計劃和話術,並取得了良好的效果。客戶對這種新的銷售方式也十分歡迎,因為他們可
以從中了解到同行的財務狀況和金融安排,有助於對自身的行業地位與發展空間進行判斷。


銀行業應用舉例3:用大數據為優化銀行運營提供決策基礎。大數據不僅能在前台與中台大顯身手,也能惠及後台運營領域。在互聯網金融風生水起的當
下,「O2O」(OnlineToOffline)成為了銀行的熱點話題。哪些客戶適合線上渠道?哪些客戶不願「觸網」?BCG曾幫助西班牙一家銀行通過
大數據技術應用對這些問題進行了解答。項目組對16個既可以在網點也可以在網路與移動渠道上完成的關鍵運營活動展開分析,建立了12個月的時間回溯深度,
把客戶群體和運營活動按照網點使用強度以及非網點渠道使用潛力進行細分。分析結果顯示,大約66%的交易活動對網點的使用強度較高,但同時對非網點渠道的
使用潛力也很高,因此可以從網點遷移到網路或移動渠道。項目組在客戶細分中發現,年輕客戶、老年客戶以及高端客戶在運營活動遷移方面潛力最大,可以優先作
為渠道遷徙的對象。通過這樣的運營調整,大數據幫助銀行在引導客戶轉移、減輕網點壓力的同時保障了客戶體驗。


BCG還曾利用專有的大數據分析工具NetworkMax,幫助一家澳大利亞銀行優化網點布局。雖然銀行客戶的線上活動日漸增多,但金融業的鐵律在互聯
網時代依然適用,也就是說在客戶身邊設立實體網點仍然是金融機構的競爭優勢。然而,網點的運營成本往往不菲,如何實現網點資源的價值最大化成為了每家銀行
面臨的問題。在該項目中,項目組結合銀行的內部數據(包括現有的網點分布和業績狀況等)和外部數據(如各個地區的人口數量、人口結構、收入水平等),對
350多個區域進行了評估,並按照主要產品系列為每個區域制定市場份額預測。項目組還通過對市場份額的驅動因素進行模擬,得出在現有網點數量不變的情況下
該行網點的理想布局圖。該行根據項目組的建議對網點布局進行了調整,並取得了良好的成效。這個案例可以為許多銀行帶來啟示:首先,銀行十分清楚自身的網點
布局,有關網點的經營業績和地址的信息全量存在於銀行的資料庫中。其次,有關一個地區的人口數量、人口結構、收入水平等數據都是可以公開獲取的數據。通過
應用大數據技術來把這兩組數據結合在一起,就可以幫助銀行實現網點布局的優化。BCG基於大數據技術而研發的Network
Max正是用來解決類似問題的工具。


銀行業應用舉例4:創新商業模式,用大數據拓展中間收入。過去,坐擁海量數據的銀行考慮的是如何使用數據來服務其核心業務。而如今,很多銀行已經走得更
遠。他們開始考慮如何把數據直接變成新產品並用來實現商業模式,進而直接創造收入。例如,澳大利亞一家大型銀行通過分析支付數據來了解其零售客戶的「消費
路徑」,即客戶進行日常消費時的典型順序,包括客戶的購物地點、購買內容和購物順序,並對其中的關聯進行分析。該銀行將這些分析結果銷售給公司客戶(比如
零售業客戶),幫助客戶更准確地判斷合適的產品廣告投放地點以及適合在該地點進行推廣的產品。這些公司客戶過去往往需要花費大量金錢向市場調研公司購買此
類數據,但如今他們可以花少得多的錢向自己的銀行購買這些分析結果,而且銀行所提供的此類數據也要可靠得多。銀行通過這種方式獲得了傳統業務之外的收入。
更重要的是,銀行通過這樣的創新為客戶提供了增值服務,從而大大增強了客戶粘性。

閱讀全文

與互聯網金融大數據公司相關的資料

熱點內容
中國銀行貨幣收藏理財上下班時間 瀏覽:442
中國醫葯衛生事業發展基金會公司 瀏覽:520
公司分紅股票會漲嗎 瀏覽:778
基金定投的定投規模品種 瀏覽:950
跨地經營的金融公司管理制度 瀏覽:343
民生銀行理財產品屬於基金嗎 瀏覽:671
開間金融公司 瀏覽:482
基金從業資格科目一的章節 瀏覽:207
貨幣基金可以每日查看收益率 瀏覽:590
投資幾個基金合適 瀏覽:909
東莞市社會保險基金管理局地址 瀏覽:273
亞洲指數基金 瀏覽:80
金融公司貸款倒閉了怎麼辦 瀏覽:349
金融服務人員存在的問題 瀏覽:303
怎樣開展普惠金融服務 瀏覽:123
今天雞蛋期貨交易價格 瀏覽:751
汕頭本地證券 瀏覽:263
利市派股票代碼 瀏覽:104
科創板基金一周年收益 瀏覽:737
2016年指數型基金 瀏覽:119