❶ 談談大數據在金融行業的應用有哪些
最直接的,哪些客戶貸款的風險比較大,哪些比較小,其實可應用的地方比較多
❷ 大數據怎樣影響著金融業
大數據可以挖掘和分析金融信息深層次的內容,使決策者能夠把握重點,引導戰略方向。
正在來臨的大數據時代,金融機構之間的競爭將在網路信息平台上全面展開,說到底就是「數據為王」。誰掌握了數據,誰就擁有風險定價能力,誰就可以獲得高額的風險收益,最終贏得競爭優勢。
中國金融業正在步入大數據時代的初級階段。經過多年的發展與積累,目前國內金融機構的數據量已經達到100TB以上級別,並且非結構化數據量正在以更快的速度增長。金融機構行在大數據應用方面具有天然優勢:一方面,金融企業在業務開展過程中積累了包括客戶身份、資產負債情況、資金收付交易等大量高價值密度的數據,這些數據在運用專業技術挖掘和分析之後,將產生巨大的商業價值;另一方面,金融機構具有較為充足的預算,可以吸引到實施大數據的高端人才,也有能力採用大數據的最新技術。
總體看,正在興起的大數據技術將與金融業務呈現快速融合的趨勢,給未來金融業的發展帶來重要機遇。
首先,大數據推動金融機構的戰略轉型。在宏觀經濟結構調整和利率逐步市場化的大環境下,國內金融機構受金融脫媒影響日趨明顯,表現為核心負債流失、盈利空間收窄、業務定位亟待調整。業務轉型的關鍵在於創新,但現階段國內金融機構的創新往往淪為監管套利,沒有能夠基於挖掘客戶內在需求,提供更有價值的服務。而大數據技術正是金融機構深入挖掘既有數據,找准市場定位,明確資源配置方向,推動業務創新的重要工具。
其次,大數據技術能夠降低金融機構的管理和運行成本。通過大數據應用和分析,金融機構能夠准確地定位內部管理缺陷,制訂有針對性的改進措施,實行符合自身特點的管理模式,進而降低管理運營成本。此外,大數據還提供了全新的溝通渠道和營銷手段,可以更好的了解客戶的消費習慣和行為特徵,及時、准確地把握市場營銷效果。
第三,大數據技術有助於降低信息不對稱程度,增強風險控制能力。金融機構可以擯棄原來過度依靠客戶提供財務報表獲取信息的業務方式,轉而對其資產價格、賬務流水、相關業務活動等流動性數據進行動態和全程的監控分析,從而有效提升客戶信息透明度。目前,先進銀行已經能夠基於大數據,整合客戶的資產負債、交易支付、流動性狀況、納稅和信用記錄等,對客戶行為進行全方位評價,計算動態違約概率和損失率,提高貸款決策的可靠性。
當然,也必須看到,金融機構在與大數據技術融合的過程中也面臨諸多挑戰和風險。
一是大數據技術應用可能導致金融業競爭版圖的重構。信息技術進步、金融業開放以及監管政策變化,客觀上降低了行業准入門檻,非金融機構更多地切入金融服務鏈條,並且利用自身技術優勢和監管盲區佔得一席之地。而傳統金融機構囿於原有的組織架構和管理模式,無法充分發揮自身潛力,反而可能處於競爭下風。
二是大數據的基礎設施和安全管理亟待加強。在大數據時代,除傳統的賬務報表外,金融機構還增加了影像、圖片、音頻等非結構化數據,傳統分析方法已不適應大數據的管理需要,軟體和硬體基礎設施建設都亟待加強。同時,金融大數據的安全問題日益突出,一旦處理不當可能遭受毀滅性損失。近年來,國內金融企業一直在數據安全方面增加投入,但業務鏈拉長、雲計算模式普及、自身系統復雜度提高等,都進一步增加了大數據的風險隱患。
三是大數據的技術選擇存在決策風險。當前,大數據還處於運行模式的探索和成長期,分析型資料庫相對於傳統的事務型資料庫尚不成熟,對於大數據的分析處理仍缺乏高延展性支持,而且它主要仍是面向結構化數據,缺乏對非結構化數據的處理能力。在此情況下,金融企業相關的技術決策就存在選擇錯誤、過於超前或滯後的風險。大數據是一個總體趨勢,但過早進行大量投入,選擇了不適合自身實際的軟硬體,或者過於保守而無所作為都有可能給金融機構的發展帶來不利影響。
應該怎樣將大數據應用於金融企業呢?
盡管大數據在金融企業的應用剛剛起步,目前影響還比較小,但從發展趨勢看,應充分認識大數據帶來的深遠影響。在制訂發展戰略時,董事會和管理層不僅要考慮規模、資本、網點、人員、客戶等傳統要素,還要更加重視對大數據的佔有和使用能力,以及互聯網、移動通訊、電子渠道等方面的研發能力;要在發展戰略中引入和踐行大數據的理念和方法,推動決策從「經驗依賴」型向「數據依靠」型轉化;要保證對大數據的資源投入,把渠道整合、信息網路化、數據挖掘等作為向客戶提供金融服務和創新產品的重要基礎。
(一)推進金融服務與社交網路的融合
我國金融企業要發展大數據平台,就必須打破傳統的數據源邊界,注重互聯網站、社交媒體等新型數據來源,通過各種渠道獲取盡可能多的客戶和市場資訊。首先要整合新的客戶接觸渠道,充分發揮社交網路的作用,增強對客戶的了解和互動,樹立良好的品牌形象。其次是注重新媒體客服的發展,利用各種聊天工具等網路工具將其打造成為與電話客服並行的服務渠道。三是將企業內部數據和外部社交數據互聯,獲得更加完整的客戶視圖,進行更高效的客戶關系管理。四是利用社交網路數據和移動數據等進行產品創新和精準營銷。五是注重新媒體渠道的輿情監測,在風險事件爆發之前就進行及時有效的處置,將聲譽風險降至最低。
(二)處理好與數據服務商的競爭、合作關系
當前各大電商平台上,每天都有大量交易發生,但這些交易的支付結算大多被第三方支付機構壟斷,傳統金融企業處於支付鏈末端,從中獲取的價值較小。為此,金融機構可考慮自行搭建數據平台,將核心話語權掌握在自己的手中。另一方面,也可以與電信、電商、社交網路等大數據平台開展戰略合作,進行數據和信息的交換共享,全面整合客戶有效信息,將金融服務與移動網路、電子商務、社交網路等融合起來。從專業分工角度講,金融機構與數據服務商開展戰略合作是比較現實的選擇;如果自辦電商,沒有專業優勢,不僅費時費力,還可能喪失市場機遇。
(三)增強大數據的核心處理能力
首先是強化大數據的整合能力。這不僅包括金融企業內部的數據整合,更重要的是與大數據鏈條上其他外部數據的整合。目前,來自各行業、各渠道的數據標准存在差異,要盡快統一標准與格式,以便進行規范化的數據融合,形成完整的客戶視圖。同時,針對大數據所帶來的海量數據要求,還要對傳統的數據倉庫技術,特別是數據傳輸方式ETL(提取、轉換和載入)進行流程再造。其次是增強數據挖掘與分析能力,要利用大數據專業工具,建立業務邏輯模型,將大量非結構化數據轉化成決策支持信息。三是加強對大數據分析結論的解讀和應用能力,關鍵是要打造一支復合型的大數據專業團隊,他們不僅要掌握數理建模和數據挖掘的技術,還要具備良好的業務理解力,並能與內部業務條線進行充分地溝通合作。
(四)加大金融創新力度,設立大數據實驗室
可以在金融企業內部專門設立大數據創新實驗室,統籌業務、管理、科技、統計等方面的人才與資源,建立特殊的管理體制和激勵機制。實驗室統一負責大數據方案的制定、實驗、評價、推廣和升級。每次推行大數據方案之前,實驗室都應事先進行單元試驗、穿行測試、壓力測試和返回檢驗;待測試通過後,對項目的風險收益作出有數據支撐的綜合評估。實驗室的另一個任務是對「大數據」進行「大分析」,不斷優化模型演算法。在「方法論上。
(五)加強風險管控,確保大數據安全。
大數據能夠在很大程度上緩解信息不對稱問題,為金融企業風險管理提供更有效的手段,但如果管理不善,「大數據」本身也可能演化成「大風險」。大數據應用改變了數據安全風險的特徵,它不僅需要新的管理方法,還必須納入到全面風險管理體系,進行統一監控和治理。為了確保大數據的安全,金融機構必須抓住三個關鍵環節:一是協調大數據鏈條中的所有機構,共同推動數據安全標准,加強產業自我監督和技術分享;二是加強與監管機構合作交流,藉助監管服務的力量,提升自身的大數據安全水準;三是主動與客戶在數據安全和數據使用方面加強溝通,提升客戶的數據安全意識,形成大數據風險管理的合力效應。
❸ 大數據對金融企業有什麼幫助
善林金融指出,大數據金融有著傳統金融難以比擬的優勢,企業通過自己的徵信系統,實專現信用管理的創屬新,有效降低壞賬率,擴大服務范圍,增加對小微企業的融資比例,降低了運營成本和服務成本,可以實現規模經濟。大數據還能夠通過海量數據的核查和評定,增加風險的可控行和管理力度,及時發現並解決可能出現的風險點,對於風險發生的規律性有精準的把握,將推動金融機構對更深入和透徹的數據的分析需求。另外,大數據金融擴展了企業的海量數據,讓企業更貼近消費者,了解消費者的真正需求,進一步增加客戶黏性。
❹ 大數據怎樣影響著金融業
正在來臨的大數據時代,金融機構之間的競爭將在網路信息平台上全面展開,說到底就是「數據為王」。誰掌握了數據,誰就擁有風險定價能力,誰就可以獲得高額的風險收益,最終贏得競爭優勢。
中國金融業正在步入大數據時代的初級階段。經過多年的發展與積累,目前國內金融機構的數據量已經達到100TB以上級別,並且非結構化數據量正在以更快的速度增長。金融機構行在大數據應用方面具有天然優勢:一方面,金融企業在業務開展過程中積累了包括客戶身份、資產負債情況、資金收付交易等大量高價值密度的數據,這些數據在運用專業技術挖掘和分析之後,將產生巨大的商業價值;另一方面,金融機構具有較為充足的預算,可以吸引到實施大數據的高端人才,也有能力採用大數據的最新技術。
總體看,正在興起的大數據技術將與金融業務呈現快速融合的趨勢,給未來金融業的發展帶來重要機遇。
首先,大數據推動金融機構的戰略轉型。在宏觀經濟結構調整和利率逐步市場化的大環境下,國內金融機構受金融脫媒影響日趨明顯,表現為核心負債流失、盈利空間收窄、業務定位亟待調整。業務轉型的關鍵在於創新,但現階段國內金融機構的創新往往淪為監管套利,沒有能夠基於挖掘客戶內在需求,提供更有價值的服務。而大數據技術正是金融機構深入挖掘既有數據,找准市場定位,明確資源配置方向,推動業務創新的重要工具。
其次,大數據技術能夠降低金融機構的管理和運行成本。通過大數據應用和分析,金融機構能夠准確地定位內部管理缺陷,制訂有針對性的改進措施,實行符合自身特點的管理模式,進而降低管理運營成本。此外,大數據還提供了全新的溝通渠道和營銷手段,可以更好的了解客戶的消費習慣和行為特徵,及時、准確地把握市場營銷效果。
第三,大數據技術有助於降低信息不對稱程度,增強風險控制能力。金融機構可以擯棄原來過度依靠客戶提供財務報表獲取信息的業務方式,轉而對其資產價格、賬務流水、相關業務活動等流動性數據進行動態和全程的監控分析,從而有效提升客戶信息透明度。目前,花旗、富國、UBS等先進銀行已經能夠基於大數據,整合客戶的資產負債、交易支付、流動性狀況、納稅和信用記錄等,對客戶行為進行360度評價,計算動態違約概率和損失率,提高貸款決策的可靠性。
❺ 金融行業適合使用哪種大數據分析軟體
金融行業的數據量比較大,可以試用一下極星大數據分析系統。它是專為大企回業打答造的大數據軟體,擁有數據採集、數據存儲、數據處理、數據挖掘、數據分析、數據可視化、數據專業演算法等強大功能,金融、電力、製造業、石化、燃氣、交通等行業都適合。
❻ 金融行業如何「把握」大數據
在企業信息化建設及互聯網行業的發展過程中,數據量的增長已經達到了前所未有的速度。廠商、分析師以及技術專家認為「大數據」(Big Data)時代已經到來,針對大數據的相關技術已經被IT部門提上了議事日程。除了如何存儲管理大數據,更為重要的問題是如何利用大數據為企業服務,通過商業智能以及高級分析應用將其價值發揮到最大。 新概念是新技術的催化劑,在大數據領域中,一些新技術包括Hadoop、MapRece都得到了更廣泛的應用,Hadoop、MapRece為通用計算與分布式架構架起了一座橋梁,而傳統的企業數據倉庫技術則遭遇了前所未有的挑戰。 數據大集中目前「數據大集中」的發展趨勢已在中國金融業獲得了廣泛的認同,一些大型的證券商和銀行已紛紛走上了這條道路。作為數據及業務應用的核心, 數據中心對於用戶的重要性就相當於心臟之於人體。目前,越來越多的金融企業已經投入到對資料中心的建設。事實上,對於眾多用戶而言,確保每周24小時持續運行已經不再是對資料中心的惟一要求了,先進的資料中心解決方案還應在靈活性、可擴展性、安全性、冗餘備份、環境控制以及業務延續性管理等方面有著更為出色的表現,而這一出色表現必須建立在「靈活、健康、高性能的綜合布線系統」的基礎之上。 不同於其他的行業的是,金融行業已經將網路系統作為其生產機器而並非是一般的辦公室運作工具,網路的暢通與可靠運行已經成為金融業正常運轉的首要條件。日益復雜的應用系統、海量的數據交換以及不斷的更新使得數據中心在其網路系統中占據及其重要的位置。安全:金融業永恆的話題信息安全是金融行業永遠的話題。如何利用信息技術的優勢加強金融機構的內部控制,提高金融監管和服務水平,防範和化解金融風險,促進金融改革和創新,從而推動我國經濟社會的發展,是當前我國金融業信息化建設面臨的重大問題。金融信息系統外應用系統相互牽連、使用對象多樣化、安全風險的多方位、信息可靠性、保密性要求高等特徵構成了金融系統的突出特點。 國際金融危機以來,金融系統的風險控制和監管被提到了前所未有的高度。 史立談道:「金融行業對網路的安全性、穩定性要求很高,系統要能夠高速處理數據,還可以提供冗餘備份和容錯功能,保證系統在任何情況下都能夠正常運行,否則就會給用戶帶來巨大的損失,同時系統需要提供非常好的管理能力和靈活性,以應對復雜的應用。」 當然,大數據在金融行業一切都還處於初級階段,但是,金融企業每天處理的數據規模依然在保持增長,大數據分析使得商務決策越來越接近原生數據,信息的質量也變得愈加重要。如果同樣復雜的分析可以運用到相關安全數據上面,那麼大數據甚至可以用來改善信息安全。 大數據應該說是具有相當大的價值,但同時它又存在巨大的安全隱患,金融行業是不能容忍任何安全問題,一旦出現問題,必然會對企業和個人造成巨大的損失。也許當大數據真的能夠解決安全以及穩定性的問題時,大數據才能真正融入金融行業當中。
❼ 金融大數據分析前景
中科聚信(SCAI)信貸工廠能夠協助銀行建立業務發展和風險計量技術水平的評分模型系統,並進行流程改造,通過評分模型系統的推廣應用
❽ 請問:金融行業在大數據這塊做的好的公司
星 橋 數 據 就 很 好 , 這 加 公 司 是 一 家 融 合 了 大 數 據 和 金 融 行 業 的 創 新 公專 司 , 公 司 目 前 有 壹 貳屬 信 用 大 數 據 風 控 系 統 等 若 干 個 創 新 產 品 , 這 些 產 品 在 緊 抓 客 戶 痛 點 的 同 時 , 為 客 戶 實 現 數 據 分 析 、 預 測 、 征 信 查 詢 、 信 用 評 估 、 風 險 評 估 、 專 業 化 匹 配 等 大 數 據 金 融 一 體 化 服 務 。
❾ 大數據技術在金融行業有哪些應用前景
大數據金融市場前景廣闊,深度開發大數據金融工具,或將重構整個金融內行業。預計未來5到10年,金融容大數據產業將迎來黃金增長期,大數據也將成為助推「大眾創業、萬眾創新」浪潮的有力抓手。
據《大數據金融行業市場前瞻與投資分析報告》數據顯示,2016年我國大數據金融市場規模為15.84億元,隨著政策逐步實施與落地,以大數據為核心手段、核心驅動力的產業金融,將邁入時代發展正軌成為主流趨勢,預計2018年中國金融大數據應用市場會突破100億元,金融業開始進入了大數據時代快車道。
大數據金融作為一個綜合性的概念,在未來的發展中,企業坐擁數據將不再局限於單一業務,第三方支付、信息化金融機構以及互聯網金融門戶都將融入到大數據金融服務平台中,大數據金融服務將在各家機構各顯神通的基礎上,實現多元業務的融合。
伴隨互聯網金融縱深發展,大數據優勢越加凸顯。作為互聯網金融創新的驅動力,大數據金融帶來的方式革新,未來走向精細化和專業化。今後大數據金融行業的努力方向,應該是以完備的大數據為基礎,基於用戶需求提供智能化一站式產品購買及定製化服務,以及數據挖掘、數據整合、數據產品、數據應用及解決方案等。
❿ 金融行業大數據怎麼玩
任何數據分析的前提是首先要理解業務模型,從你的金融數據是怎麼產生的,包括哪些指標哪些數據,你的分析是要為什麼業務服務的,也就是你的目的。比如你分析金融數據的目的是要找出最有價值的金融產品,還是最有價值的客戶,還是尋找最有效的成...
在企業信息化建設及互聯網行業的發展過程中,數據量的增長已經達到了前所未有的速度。廠商、分析師以及技術專家認為「大數據」(Big Data)時代已經到來,針對大數據的相關技術已經被IT部門提上了議事日程。除了如何存儲管理大數據,更為重要的問題...
在金融領域大數據用的好還是很不錯的。比如收集股民的投資信息就可以知道大眾的投資走向,你就可以關注這些行業。
實質是資源共享,為單一客戶提供綜合金融服務,說白了就是充分挖掘客戶家底。
大數據對金融行業的影響有很多方面吧,目前大數據的來源主要包括瀏覽、購買、搜索、關注、社交的用戶行為。對於金融行業來說最基本的影響就是對用戶的畫像更加精準了,傳統的數據如年齡職業住址聯系電話等信息自然不在話下,更重要的是對於用戶...
大數據(big data),是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。 有人把數據比喻為蘊 藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大...
說到運用啊,樓主你知道「信誠人壽悅生活愛家行動」活動不,就是和堂傳媒運用了多屏互動手段和大數據手段。以40000+的有效用戶數據打破如今互聯網金融行業營銷記錄,也開創了大數據等技術運用的先河,可牛啦。
讓每一條查詢的關聯度提高,讓每一條查詢的相似查詢結果智能化顯示,人性化的羅列每一次查詢可能對應的結果,比搜索更貼心; 金融業的利率差將會更加復合資本的運作規律:行政化的切割線將會被套利資本沖垮、淹沒,收益率劃分的利率差切割線將會...
:)在我們的生活中,所有人都在製造和分享數據——但並非所有數據都能得到合理使用。這種數據缺乏帶來的信息不對稱,導致了金融行業中「二八定律」的出現。二八定律:在當前利率非完全市場化與小微企業抵押擔保品欠缺的情況下,採用傳統信貸技術從...
大數據可以挖掘和分析金融信息深層次的內容,使決策者能夠把握重點,引導戰略方向