导航:首页 > 金融公司 > 企业金融服务大数据

企业金融服务大数据

发布时间:2020-12-15 22:50:33

A. 企业对金融支持大数据产业发展有哪些意见或是政策建议

乐思软件认为:大数据能够帮助企业预测经济形势、把握市场态势、了解消费需求、提高研发效率,不仅具有巨大的潜在商业价值,而且为企业提升竞争力提供了新思路。

具体来说,大数据对企业的作用可以分为以下几个方面:

企业决策大数据化。现代企业大都具备决策支持系统,以辅助决策。但现行的决策支持系统仅搜集部分重点数据,数据量小、数据面窄。企业决策大数据化的基础是企业信息数字化,重点是数据的整理分析。首先,企业需要进行信息数字化采集系统的更新升级。按各决策层级的功能建立数据采集系统,以横向、纵向、实时三维模式广泛采集数据。其次,企业需要推进决策权力分散化、前端化、自动化。对多维度的数据进行提炼整合,在人为影响起主要作用的顶层,提高决策指标信息含量和科学性;在人为影响起次要作用的底层,推进决策指标量化,完善决策支持系统和决策机制。大数据决策机制让数据说话,可以减少人为干扰因素,提高决策精准度。

成本控制大数据化。目前,很多企业在采购、物流、储存、生产、销售等环节引入了成本控制系统,但系统间融合度较低。企业可对现有成本控制系统进行改造升级,打造大数据综合成本控制系统。其一,在成本控制的全过程采集数据,以求最大限度地描述事物,实现信息数字化、数据大量化。其二,推进成本控制标准、控制机理系统化。量化指标,实现成本控制自动化,减少人为因素干扰;细化指标,以获取更精确的数据。其三,构建综合成本控制系统,将成本控制所涉及的从原材料采购到产品生产、运输、储存、销售等环节有机结合起来,形成一个综合评价体系,为成本控制提供可靠依据。成本控制大数据化以预先控制为主、过程控制为中、产后控制为辅的方式,可以最大限度降低企业运营成本。

服务体系大数据化。品牌和服务是企业的核心竞争力,服务体系直接影响企业的生存发展。优化服务体系的重点是健全沟通机制、联络机制和反馈机制,利用大数据优化服务体系的关键是找到服务体系中存在的问题。首先,加强数据收集,对消费者反馈的信息进行分类分析,找到服务体系的问题,然后对症下药,建立高效服务机制,提高服务效率。其次,将服务方案移到线上,打造自动化服务系统。快速分析、比对消费者服务需求信息,比对成功则自动进入服务程序,实现快速处理;比对失败则转入人工服务系统,对新服务需求进行研究处理,并快速将新服务机制添加至系统,优化服务系统。服务体系大数据化,可以实现服务体系的高度自动化,最大程度提高服务质量和效率。

产品研发大数据化。产品研发存在较高风险。大数据能精确分析客户需求,降低风险,提高研发成功率。产品研发的主要环节是消费需求分析,产品研发大数据化的关键环节是数据收集、分类整理和分析利用。企业官网的消费者反馈系统、贴吧、论坛、新闻评价体系等是消费者需求信息的主要来源,应注重从中收集数据。同时,可与论坛、贴吧、新闻评价体系合作构建消费者综合服务系统,完善消费者信息反馈机制,实现信息收集大量化、全面化、自动化,为产品研发提供信息源。然后,对收集的非结构化数据进行分类整理,以达到精确分析消费需求、缩短产品研发周期、提高研发效率的目的。产品研发大数据化,可以精准分析消费者需求,提高产品研发质量和效率,使企业在竞争中占据优势。

B. 优秀的互联网金融公司,都是怎么玩大数据风控的

现在一提起互联网金融行业、Fintech领域,人工智能、大数据风控的热度就直线飙升。许多交易规模比较大的互联网金融公司都在努力发展大数据风控技术,以构建提供普惠金融服务的能力。
那么,这些优秀的互联网金融公司,都是怎么玩大数据风控的呢?
陆金所:KYC 2.0系统
精准判断投资者的风险承受能力
陆金所自成立起就引进国际领先的第四代风险管理系统,借鉴平安集团经验,形成了成熟的风险管理数据模型。其近日又推出了KYC 2.0系统,力求通过大数据技术、机器学习以及金融工程等方法,建立完整的互联网财富管理平台投资者适当性管理体系,在资金端对投资者进行“精准画像”,并提供智能推荐服务。
据了解,KYC2.0系统在原有的保守、稳健、平衡、成长、进取五大类型基础上对投资者风险承受力评估结果进行量化,每位用户都会获得专属的风险承受能力分值,又称“坚果财智分”,对投资者风险承受能力的判断更精准。
点评:量化数据信息,进行大数据建模。
风控最好的数据还是金融数据,例如年龄、收入、职业、学历、资产、负债等信用数据,这些数据同信用相关度高,可以反映用户的还款能力和还款意愿,这些数据因子在风控模型中必不可少,权重也很高,是风险评估最好的数据。
所以,陆金所以平安集团经验为基础运用到的大数据风控,使用的是围绕用户周围的信用数据,这些数据的特点是和用户的信用情况高度相关,可以作为一个重要因子进行录入,对其个人进行打分,再对其进行个体分析,最终得到一个综合评分,这就对用户进行了一个精准的风险承受能力评判。
民贷天下:拓宽数据维度
实现纯线上智能化服务
民贷天下基于稳健、安全、规范的风控理念,其风控部门确定了“风控从严”原则,设定了借款审查、贷中管理、贷后跟踪等风控流程。目前,民贷天下正全力推进全智能化建设,构造一个完整的、从资产端到平台端的全链路大数据风控系统,通过对人工智能、大数据分析、知识图谱、区块链等技术的运用,为平台运营及业务发展提供强大动力。
在传统数据之外,民贷天下还不断拓展数据维度,如在用户授权下,对用户社交数据、访问时间、相关认证、通讯记录等数据整合分析,并且与蚂蚁金服、芝麻信用、前海征信、同盾等第三方机构紧密合作,进一步丰富对用户的数据画像,使民贷天下的大数据风控系统更加精准,从而实现从客户申请、受理、审核、授信、放款到贷中贷后管理等纯线上智能化服务。
点评:拓宽数据维度,是对传统风控的补充。
传统风控模型已经不能适应复杂的现代风险管理环境,特别在数据信息录入维度上,影响用户信用评分的信息较多,很多都没有引入到风险评估流程。而大数据风控可以提供全面的数据(数据的广度),强相关数据(数据的深度),实效性数据(数据的鲜活度)。
民贷天下利用这样的大数据风控,通过与第三方合作等方式,将内部数据以及原有数据打通和整合之后,就会影响风险评估结果,提升信用风险管理水平,客观地反映用户风险水平。这些多维度、全面的信息正是大数据风控的优势所在,同时也是对传统风控一个很好的补充,进一步实现智能化服务。
真融宝:以数据介质为主
构建数据和模型算法的核心技术
真融宝以数据介质为主,利用分布式计算处理数据,以公众互联网的全网为平台,以全网收集的数据来补充内部网集成的数据。并且在用户数据方面,对每个新进用户建立一份电子档案,对每名用户投资需求进行了解登记,并对每一笔资金进行多重备份,形成动态的用户资金数据。
除此之外,真融宝还利用大数据进行决策,将金融活动转化为智能数据处理活动,降低人为因素的干扰,提高风险评估、分析和预警能力,大数据提供的信息使得真融宝的决策更加科学智能化,对于风控的精准度控制起到非常大的帮助作用。
点评:数据和模型算法,可建立实时风险管理视图。
大数据的数据采集和计算能力,可以帮助企业建立实时的风险管理视图。借助于全面多纬度的数据、自我学习能力的风控模型、实时计算结果、坏种子数据,真融宝可以通过大量的数据累积,能够产生出非常有效的识别客户的能力,提升量化风险评估能力。
数据、技术、模型、分析将成为信用风险评估的四个关键元素,其背后的力量就是大数据的技术和分析能力。真融宝利用大数据的风控能力,实时输出风险因子信息,提高了风险管理的及时性。
一直以来,风控都是金融机构的生命线。从陆金所、民贷天下、真融宝这三家互联网金融公司为例,预计在未来,可能每家做借贷类的互联网金融公司都会发展出属于自己的一套大数据风控体系,并且随着互联创业公司的业务数据越来越大,数据基础会逐渐扎实。

C. 大数据怎样影响着金融业

正在来临的大数据时代,金融机构之间的竞争将在网络信息平台上全面展开,说到底就是“数据为王”。谁掌握了数据,谁就拥有风险定价能力,谁就可以获得高额的风险收益,最终赢得竞争优势。
中国金融业正在步入大数据时代的初级阶段。经过多年的发展与积累,目前国内金融机构的数据量已经达到100TB以上级别,并且非结构化数据量正在以更快的速度增长。金融机构行在大数据应用方面具有天然优势:一方面,金融企业在业务开展过程中积累了包括客户身份、资产负债情况、资金收付交易等大量高价值密度的数据,这些数据在运用专业技术挖掘和分析之后,将产生巨大的商业价值;另一方面,金融机构具有较为充足的预算,可以吸引到实施大数据的高端人才,也有能力采用大数据的最新技术。
总体看,正在兴起的大数据技术将与金融业务呈现快速融合的趋势,给未来金融业的发展带来重要机遇。
首先,大数据推动金融机构的战略转型。在宏观经济结构调整和利率逐步市场化的大环境下,国内金融机构受金融脱媒影响日趋明显,表现为核心负债流失、盈利空间收窄、业务定位亟待调整。业务转型的关键在于创新,但现阶段国内金融机构的创新往往沦为监管套利,没有能够基于挖掘客户内在需求,提供更有价值的服务。而大数据技术正是金融机构深入挖掘既有数据,找准市场定位,明确资源配置方向,推动业务创新的重要工具。
其次,大数据技术能够降低金融机构的管理和运行成本。通过大数据应用和分析,金融机构能够准确地定位内部管理缺陷,制订有针对性的改进措施,实行符合自身特点的管理模式,进而降低管理运营成本。此外,大数据还提供了全新的沟通渠道和营销手段,可以更好的了解客户的消费习惯和行为特征,及时、准确地把握市场营销效果。
第三,大数据技术有助于降低信息不对称程度,增强风险控制能力。金融机构可以摈弃原来过度依靠客户提供财务报表获取信息的业务方式,转而对其资产价格、账务流水、相关业务活动等流动性数据进行动态和全程的监控分析,从而有效提升客户信息透明度。目前,花旗、富国、UBS等先进银行已经能够基于大数据,整合客户的资产负债、交易支付、流动性状况、纳税和信用记录等,对客户行为进行360度评价,计算动态违约概率和损失率,提高贷款决策的可靠性。

D. 大数据技术在金融行业有哪些应用前景

大数据金融市场前景广阔,深度开发大数据金融工具,或将重构整个金融内行业。预计未来5到10年,金融容大数据产业将迎来黄金增长期,大数据也将成为助推“大众创业、万众创新”浪潮的有力抓手。
据《大数据金融行业市场前瞻与投资分析报告》数据显示,2016年我国大数据金融市场规模为15.84亿元,随着政策逐步实施与落地,以大数据为核心手段、核心驱动力的产业金融,将迈入时代发展正轨成为主流趋势,预计2018年中国金融大数据应用市场会突破100亿元,金融业开始进入了大数据时代快车道。
大数据金融作为一个综合性的概念,在未来的发展中,企业坐拥数据将不再局限于单一业务,第三方支付、信息化金融机构以及互联网金融门户都将融入到大数据金融服务平台中,大数据金融服务将在各家机构各显神通的基础上,实现多元业务的融合。
伴随互联网金融纵深发展,大数据优势越加凸显。作为互联网金融创新的驱动力,大数据金融带来的方式革新,未来走向精细化和专业化。今后大数据金融行业的努力方向,应该是以完备的大数据为基础,基于用户需求提供智能化一站式产品购买及定制化服务,以及数据挖掘、数据整合、数据产品、数据应用及解决方案等。

E. 大数据对金融企业有什么帮助

善林金融指出,大数据金融有着传统金融难以比拟的优势,企业通过自己的征信系统,实专现信用管理的创属新,有效降低坏账率,扩大服务范围,增加对小微企业的融资比例,降低了运营成本和服务成本,可以实现规模经济。大数据还能够通过海量数据的核查和评定,增加风险的可控行和管理力度,及时发现并解决可能出现的风险点,对于风险发生的规律性有精准的把握,将推动金融机构对更深入和透彻的数据的分析需求。另外,大数据金融扩展了企业的海量数据,让企业更贴近消费者,了解消费者的真正需求,进一步增加客户黏性。

F. 大数据怎样影响着金融业

大数据可以挖掘和分析金融信息深层次的内容,使决策者能够把握重点,引导战略方向。

正在来临的大数据时代,金融机构之间的竞争将在网络信息平台上全面展开,说到底就是“数据为王”。谁掌握了数据,谁就拥有风险定价能力,谁就可以获得高额的风险收益,最终赢得竞争优势。

中国金融业正在步入大数据时代的初级阶段。经过多年的发展与积累,目前国内金融机构的数据量已经达到100TB以上级别,并且非结构化数据量正在以更快的速度增长。金融机构行在大数据应用方面具有天然优势:一方面,金融企业在业务开展过程中积累了包括客户身份、资产负债情况、资金收付交易等大量高价值密度的数据,这些数据在运用专业技术挖掘和分析之后,将产生巨大的商业价值;另一方面,金融机构具有较为充足的预算,可以吸引到实施大数据的高端人才,也有能力采用大数据的最新技术。
总体看,正在兴起的大数据技术将与金融业务呈现快速融合的趋势,给未来金融业的发展带来重要机遇。

首先,大数据推动金融机构的战略转型。在宏观经济结构调整和利率逐步市场化的大环境下,国内金融机构受金融脱媒影响日趋明显,表现为核心负债流失、盈利空间收窄、业务定位亟待调整。业务转型的关键在于创新,但现阶段国内金融机构的创新往往沦为监管套利,没有能够基于挖掘客户内在需求,提供更有价值的服务。而大数据技术正是金融机构深入挖掘既有数据,找准市场定位,明确资源配置方向,推动业务创新的重要工具。


其次,大数据技术能够降低金融机构的管理和运行成本。通过大数据应用和分析,金融机构能够准确地定位内部管理缺陷,制订有针对性的改进措施,实行符合自身特点的管理模式,进而降低管理运营成本。此外,大数据还提供了全新的沟通渠道和营销手段,可以更好的了解客户的消费习惯和行为特征,及时、准确地把握市场营销效果。


第三,大数据技术有助于降低信息不对称程度,增强风险控制能力。金融机构可以摈弃原来过度依靠客户提供财务报表获取信息的业务方式,转而对其资产价格、账务流水、相关业务活动等流动性数据进行动态和全程的监控分析,从而有效提升客户信息透明度。目前,先进银行已经能够基于大数据,整合客户的资产负债、交易支付、流动性状况、纳税和信用记录等,对客户行为进行全方位评价,计算动态违约概率和损失率,提高贷款决策的可靠性。

当然,也必须看到,金融机构在与大数据技术融合的过程中也面临诸多挑战和风险。

一是大数据技术应用可能导致金融业竞争版图的重构。信息技术进步、金融业开放以及监管政策变化,客观上降低了行业准入门槛,非金融机构更多地切入金融服务链条,并且利用自身技术优势和监管盲区占得一席之地。而传统金融机构囿于原有的组织架构和管理模式,无法充分发挥自身潜力,反而可能处于竞争下风。

二是大数据的基础设施和安全管理亟待加强。在大数据时代,除传统的账务报表外,金融机构还增加了影像、图片、音频等非结构化数据,传统分析方法已不适应大数据的管理需要,软件和硬件基础设施建设都亟待加强。同时,金融大数据的安全问题日益突出,一旦处理不当可能遭受毁灭性损失。近年来,国内金融企业一直在数据安全方面增加投入,但业务链拉长、云计算模式普及、自身系统复杂度提高等,都进一步增加了大数据的风险隐患。

三是大数据的技术选择存在决策风险。当前,大数据还处于运行模式的探索和成长期,分析型数据库相对于传统的事务型数据库尚不成熟,对于大数据的分析处理仍缺乏高延展性支持,而且它主要仍是面向结构化数据,缺乏对非结构化数据的处理能力。在此情况下,金融企业相关的技术决策就存在选择错误、过于超前或滞后的风险。大数据是一个总体趋势,但过早进行大量投入,选择了不适合自身实际的软硬件,或者过于保守而无所作为都有可能给金融机构的发展带来不利影响。

应该怎样将大数据应用于金融企业呢?

尽管大数据在金融企业的应用刚刚起步,目前影响还比较小,但从发展趋势看,应充分认识大数据带来的深远影响。在制订发展战略时,董事会和管理层不仅要考虑规模、资本、网点、人员、客户等传统要素,还要更加重视对大数据的占有和使用能力,以及互联网、移动通讯、电子渠道等方面的研发能力;要在发展战略中引入和践行大数据的理念和方法,推动决策从“经验依赖”型向“数据依靠”型转化;要保证对大数据的资源投入,把渠道整合、信息网络化、数据挖掘等作为向客户提供金融服务和创新产品的重要基础。

(一)推进金融服务与社交网络的融合

我国金融企业要发展大数据平台,就必须打破传统的数据源边界,注重互联网站、社交媒体等新型数据来源,通过各种渠道获取尽可能多的客户和市场资讯。首先要整合新的客户接触渠道,充分发挥社交网络的作用,增强对客户的了解和互动,树立良好的品牌形象。其次是注重新媒体客服的发展,利用各种聊天工具等网络工具将其打造成为与电话客服并行的服务渠道。三是将企业内部数据和外部社交数据互联,获得更加完整的客户视图,进行更高效的客户关系管理。四是利用社交网络数据和移动数据等进行产品创新和精准营销。五是注重新媒体渠道的舆情监测,在风险事件爆发之前就进行及时有效的处置,将声誉风险降至最低。

(二)处理好与数据服务商的竞争、合作关系

当前各大电商平台上,每天都有大量交易发生,但这些交易的支付结算大多被第三方支付机构垄断,传统金融企业处于支付链末端,从中获取的价值较小。为此,金融机构可考虑自行搭建数据平台,将核心话语权掌握在自己的手中。另一方面,也可以与电信、电商、社交网络等大数据平台开展战略合作,进行数据和信息的交换共享,全面整合客户有效信息,将金融服务与移动网络、电子商务、社交网络等融合起来。从专业分工角度讲,金融机构与数据服务商开展战略合作是比较现实的选择;如果自办电商,没有专业优势,不仅费时费力,还可能丧失市场机遇。
(三)增强大数据的核心处理能力

首先是强化大数据的整合能力。这不仅包括金融企业内部的数据整合,更重要的是与大数据链条上其他外部数据的整合。目前,来自各行业、各渠道的数据标准存在差异,要尽快统一标准与格式,以便进行规范化的数据融合,形成完整的客户视图。同时,针对大数据所带来的海量数据要求,还要对传统的数据仓库技术,特别是数据传输方式ETL(提取、转换和加载)进行流程再造。其次是增强数据挖掘与分析能力,要利用大数据专业工具,建立业务逻辑模型,将大量非结构化数据转化成决策支持信息。三是加强对大数据分析结论的解读和应用能力,关键是要打造一支复合型的大数据专业团队,他们不仅要掌握数理建模和数据挖掘的技术,还要具备良好的业务理解力,并能与内部业务条线进行充分地沟通合作。

(四)加大金融创新力度,设立大数据实验室

可以在金融企业内部专门设立大数据创新实验室,统筹业务、管理、科技、统计等方面的人才与资源,建立特殊的管理体制和激励机制。实验室统一负责大数据方案的制定、实验、评价、推广和升级。每次推行大数据方案之前,实验室都应事先进行单元试验、穿行测试、压力测试和返回检验;待测试通过后,对项目的风险收益作出有数据支撑的综合评估。实验室的另一个任务是对“大数据”进行“大分析”,不断优化模型算法。在“方法论上。

(五)加强风险管控,确保大数据安全。

大数据能够在很大程度上缓解信息不对称问题,为金融企业风险管理提供更有效的手段,但如果管理不善,“大数据”本身也可能演化成“大风险”。大数据应用改变了数据安全风险的特征,它不仅需要新的管理方法,还必须纳入到全面风险管理体系,进行统一监控和治理。为了确保大数据的安全,金融机构必须抓住三个关键环节:一是协调大数据链条中的所有机构,共同推动数据安全标准,加强产业自我监督和技术分享;二是加强与监管机构合作交流,借助监管服务的力量,提升自身的大数据安全水准;三是主动与客户在数据安全和数据使用方面加强沟通,提升客户的数据安全意识,形成大数据风险管理的合力效应。

G. 目前国内做金融大数据的创业企业有哪些

金融是货币流通和信用活动以及与之相联系的经济活动的总称,广义的金融版泛指一切与信用货币的权发行、保管、兑换、结算,融通有关的经济活动,甚至包括金银的买卖,狭义的金融专指信用货币的融通。

金融的内容可概括为货币的发行与回笼,存款的吸收与付出,贷款的发放与回收,金银、外汇的买卖,有价证券的发行与转让,保险、信托、国内、国际的货币结算等。从事金融活动的机构主要有银行、信托投资公司、保险公司、证券公司,还有信用合作社、财务公司、投资信托公司、金融租赁公司以及证券、金银、外汇交易所等。

H. 互联网金融模式的大数据金融

大数据金融是指依托于海量、非结构化的数据,通过互联网、云计算等信息化方专式对其数据进行属专业化的挖掘和分析,并与传统金融服务相结合,创新性开展相关资金融通工作的统称。大数据金融扩充了金融业的企业种类,不再是传统金融独大,并创新了金融产品和服务,扩大了客户范围,降低了企业成本。大数据金融按照平台运营模式,可分为平台金融和供应链金融两大模式。两种模式代表企业分别为阿里金融和京东金融。

I. 大数据DMP类服务有什么用对金融公司用处大吗

很大的呀。
投资建议、风险管控、市场政策这些,都可以用DMP类服务完成。
我们公司当时就买了慧科讯业的软·件
做一些重要决策,之前都会参考一下他们提供的数据和建议

J. 大数据金融风控解决方案哪些公司可以提供

我们就是可以的,大数据风控即大数据风险控制,是指利用数据分版析和模型进行风险评估,为金权融行业和个人用户提供全方位的安全保障。
大数据风控流程的建立主要分为四个阶段:数据收集、数据建模、构建客户评分体系及监测分析。收集到海量数据后,需经过大量的清洗、探索与抽样,运用灵活策略来交叉匹配并综合分析,构建出客户评分体系。
基于先进的风控分析模型,以及准确、稳定、实时更新的丰富数据源,利用精密算法和灵活策略进行综合高效的监测分析,保障业务平台健康稳定运行。

阅读全文

与企业金融服务大数据相关的资料

热点内容
中国银行货币收藏理财上下班时间 浏览:442
中国医药卫生事业发展基金会公司 浏览:520
公司分红股票会涨吗 浏览:778
基金定投的定投规模品种 浏览:950
跨地经营的金融公司管理制度 浏览:343
民生银行理财产品属于基金吗 浏览:671
开间金融公司 浏览:482
基金从业资格科目一的章节 浏览:207
货币基金可以每日查看收益率 浏览:590
投资几个基金合适 浏览:909
东莞市社会保险基金管理局地址 浏览:273
亚洲指数基金 浏览:80
金融公司贷款倒闭了怎么办 浏览:349
金融服务人员存在的问题 浏览:303
怎样开展普惠金融服务 浏览:123
今天鸡蛋期货交易价格 浏览:751
汕头本地证券 浏览:263
利市派股票代码 浏览:104
科创板基金一周年收益 浏览:737
2016年指数型基金 浏览:119